Les matrices de Toeplitz sont des matrices non-normales, dont l'analyse spectrale en grande dimension est bien comprise. Le spectre de ces matrices est en particulier très sensible à de petites perturbations. On s'intéressera dans cet exposé aux matrices de Toeplitz à bande, dont le symbole est donné par un polynôme de Laurent, et perturbées par une matrice aléatoire. Le but est de décrire les valeurs propres hors du support de la mesure limite de la perturbation quand la dimension tend vers l'infini, appelées "outliers", et qui apparaissent en fonction de l'indice de la courbe du plan complexe déterminée par le symbole. Travail en cours et en collaboration avec Mireille Capitaine et Charles Bordenave.