Dans cet exposé nous étudierons l'espace des formes différentielles symétriques holomorphes sur une variété intersection complète dans un espace projectif. Par des méthodes cohomologiques, nous donnerons une description explicite de cet espace en fonction des équations de la variété intersection complète que l'on considère. La principale application de ce travail est la construction de variétés à fibré cotangent ample, nous permettant de donner de nouveaux résultats en direction d'une conjecture d'Olivier Debarre.